Monitoring Report CARBON OFFSET UNIT (CoU) PROJECT

Title: 59.4 MW Bundled Wind Power Project in Rajasthan & Madhya Pradesh by Orchid Renewable Powertech Private Limited Version 1.0 Date 05/03/2025 Second CoU Issuance Period: 1 year 00 Month Monitoring Period: 01/01/2024 to 31/12/2024

Monitoring Report (MR) CARBON OFFSET UNIT (CoU) PROJECT

Monitori	ng Report					
Title of the project activity	59.4 MW Bundled Wind Power Project in Rajasthan & Madhya Pradesh by Orchid Renewable Powertech Private Limited					
UCR Project Registration Number	447					
Version	1.0					
Completion date of the MR	05/03/2025					
Monitoring period number and duration of this monitoring period	Monitoring Period Number: Second Issuance Duration of this monitoring Period: 01/01/2024 to 31/12/2024					
Project participants	ORCHID RENEWABLE POWERTECH PRIVATE LIMITED					
Host Party	India					
Applied methodologies and standardized baselines	CDM UNFCCC Methodology ACM0002: Grid connected electricity generation from renewable sources- Version 21.0					
Sectoral scopes	01 Energy industries (Renewable/Non-Renewable Sources)					
Actual amount of GHG emission reductions for this monitoring period	2024: 53,197 CoUs (53,197 tCO2eq)					
Total:	53,197CoUs (53,197tCO2eq)					

SECTION A. Description of project activity

A.1. Purpose and general description of project activity >>

a) Purpose of the project activity and the measures taken for GHG emission reductions >>

The Project activity titled, "59.4 MW Bundled Wind Power Project in Rajasthan & Madhya Pradesh by Orchid Renewable Powertech Private Limited" is a bundled wind-power Project located in Rajasthan and Madhya Pradesh. This project comprises of 56 wind turbines spread across 9 villages in two states: Rajasthan (seven villages in Jaisalmer and Jodhpur districts) and Madhya Pradesh (two villages in Dewas district).

It has been operational since 31 March 2006 which is the earliest commissioning date, and the last commissioning date of the project is March 14, 2011, owned by Orchid Renewable Powertech Private limited (hereinafter referred to as the Project Proponent or PP).

Company	LOCNO	Make	Site	Capacity	DOC	Village
Orchid-Raj	MK205	Suzlon	Jaisalmer	2100	11-Sep-10	Selat
Orchid-Raj	MK204	Suzlon	Jaisalmer	2100	11-Sep-10	Selat
Orchid-Raj	MK203	Suzlon	Jaisalmer	2100	11-Sep-10	Selat
Orchid-Raj	MK202	Suzlon	Jaisalmer	2100	24-Sep-10	Selat
Orchid-Raj	MK201	Suzlon	Jaisalmer	2100	24-Sep-10	Selat
Orchid-Raj	AK29	Suzlon	Akal	1250	14-Mar-11	Moda
Orchid-Raj	AK18	Suzlon	Akal	1250	14-Mar-11	Sirwa
			RATAN KA			
Orchid-Raj	J723	Suzlon	BAAS	1500	31-Mar-08	Deriya
			RATAN KA			
Orchid-Raj	J724	Suzlon	BAAS	1500	31-Mar-08	Deriya
			RATAN KA			
Orchid-Raj	J725	Suzlon	BAAS	1500	31-Mar-08	Deriya
			RATAN KA			
Orchid-Raj	J726	Suzlon	BAAS	1500	31-Mar-08	Deriya
			RATAN KA			
Orchid-Raj	J727	Suzlon	BAAS	1500	31-Mar-08	Deriya
			RATAN KA			
Orchid-Raj	RKBNL09	Suzlon	BAAS	1500	25-Sep-09	Bastwa
			RATAN KA			
Orchid-Raj	RKB87	Suzlon	BAAS	1500	07-Nov-09	Bastwa
			RATAN KA			
Orchid-Raj	RKB84	Suzlon	BAAS	1500	29-Sep-09	Bastwa
Orchid-Raj	RKB85	Suzlon	RATAN KA	1500	25-Sep-09	Bastwa

			BAAS	1		
	KSOLTI-07					
Orchid-Raj	(77)	Enercon	Tinwari	800	30-Sep-08	Salodi
J.	KSOLTI-10				· ·	
Orchid-Raj	(64)	Enercon	Tinwari	800	26-Sep-08	Salodi
	KSOLTI-06					
Orchid-Raj	(76)	Enercon	Tinwari	800	30-Sep-08	Salodi
	KSOLTI-05					
Orchid-Raj	(74)	Enercon	Tinwari	800	26-Sep-08	Salodi
2	KSOLTI-09					
Orchid-Raj	(65)	Enercon	Tinwari	800	26-Sep-08	Salodi
2	KSOLTI-08					
Orchid-Raj	(66)	Enercon	Tinwari	800	30-Sep-08	Salodi
2	KSOLTI-04					
Orchid-Raj	(71)	Enercon	Tinwari	800	29-Sep-08	Salodi
	KSOLTI-03				•	
Orchid-Raj	(69)	Enercon	Tinwari	800	26-Sep-08	Salodi
5	KSOLTI-02					
Orchid-Raj	(14)	Enercon	Tinwari	800	26-Sep-08	Beru
	KSOLTI-01				•	
Orchid-Raj	(13)	Enercon	Tinwari	800	26-Sep-08	Beru
Orchid-MP	N-16	Suzlon	Dewas	1250	31-Mar-06	Nagada
Orchid-MP	N-13	Suzlon	Dewas	1250	31-Mar-06	Nagada
	KSOLRT-30					
Orchid-MP	(90)	Enercon	Dewas	800	29-Jun-09	Karnavad
	KSOLRT-29					
Orchid-MP	(65)	Enercon	Dewas	800	10-Jun-09	Karnavad
	KSOLRT-28					
Orchid-MP	(64)	Enercon	Dewas	800	10-Jun-09	Karnavad
	KSOLRT-27					
Orchid-MP	(63)	Enercon	Dewas	800	10-Jun-09	Karnavad
	KSOLRT-31					
Orchid-MP	(91)	Enercon	Dewas	800	29-Jun-09	Karnavad
	KSOLRT-32					
Orchid-MP	(92)	Enercon	Dewas	800	29-Jun-09	Karnavad
	KSOLRT-24					
Orchid-MP	(54)	Enercon	Dewas	800	10-Jun-09	Karnavad
	KSOLRT-33					
Orchid-MP	(93)	Enercon	Dewas	800	29-Jun-09	Karnavad
	KSOLRT-25					
Orchid-MP	(55)	Enercon	Dewas	800	10-Jun-09	Karnavad
	KSOLRT-34					
Orchid-MP	(94)	Enercon	Dewas	800	29-Jun-09	Karnavad
	KSOLRT-26					
Orchid-MP	(56)	Enercon	Dewas	800	10-Jun-09	Karnavad
	KSOLRT-23					
Orchid-MP	(53)	Enercon	Dewas	800	26-Mar-09	Karnavad
OrchitMD		Energy	Derror	000	26 Mar 00	V
Orchid-MP	KSOLRT-15 Emission And Offset Re	Enercon	Dewas	800	26-Mar-09	Karnavad

	(45)					
	KSOLRT-16					
Orchid-MP	(46)	Enercon	Dewas	800	26-Mar-09	Karnavad
	KSOLRT-14					
Orchid-MP	(44)	Enercon	Dewas	800	08-Aug-08	Karnavad
	KSOLRT-13					
Orchid-MP	(43)	Enercon	Dewas	800	21-Jul-08	Karnavad
	KSOLRT-12					
Orchid-MP	(42)	Enercon	Dewas	800	21-Jul-08	Karnavad
	KSOLRT-11					
Orchid-MP	(41)	Enercon	Dewas	800	24-Jun-08	Karnavad
	KSOLRT-10					
Orchid-MP	(40)	Enercon	Dewas	800	24-Jun-08	Karnavad
	KSOLRT-09					
Orchid-MP	(39)	Enercon	Dewas	800	24-Jun-08	Karnavad
	KSOLRT-08					
Orchid-MP	(19)	Enercon	Dewas	800	20-Mar-08	Karnavad
	KSOLRT-07		_			
Orchid-MP	(18)	Enercon	Dewas	800	20-Mar-08	Karnavad
	KSOLRT-06		_			
Orchid-MP	(17)	Enercon	Dewas	800	20-Mar-08	Karnavad
	KSOLRT-05	-	5	000		
Orchid-MP	(16)	Enercon	Dewas	800	20-Mar-08	Karnavad
	KSOLRT-03		Ð	000		T Z 1
Orchid-MP	(14)	Enercon	Dewas	800	20-Mar-08	Karnavad
Ontit	KSOLRT-04	E	D	000	20 Mar 02	V 1
Orchid-MP	(15) KSOL DT 02	Enercon	Dewas	800	20-Mar-08	Karnavad
Orahid MD	KSOLRT-02	Energer	Dawaa	800	20 Mar 09	Vomovol
Orchid-MP	(10) KSOLRT-01	Enercon	Dewas	800	20-Mar-08	Karnavad
Orohid MD		Energon	Dowoo	800	20 Mar 09	Vornoved
Orchid-MP	(9)	Enercon	Dewas	800	20-Mar-08	Karnavad

This bundled project will generate approximately **70,273**MWh electricity per annum. The net generated electricity from the project activity is for selling it to Jaipur,Jodhpur, & Ajmer VIDYUTH VITRAN NIGAM LIMITED(JVVNL) for Rajasthan & MP Power Trading Co. Ltd for Madhya Pradesh by the project proponent. The power produced by the Project Activity is evacuated at Amarsagar 220KV/132KV, Govt Akal GSS 440 KV/220KV, Tinwari GSS 220 KV/132KV, located at Jaisalmer and Jodhpur. For Madhya Pradesh the power produced by the project activity is evacuated at Dewas GSS 132KV/33KV, Ashtha,Vicholi & Indore 220KV/33KV located at Dewas. A Power Purchase Agreement has been signed between PP and RDPPC & M.P.P.K.V.V Co Ltd. The project activity has been helping in greenhouse gas (GHG) emission reduction by using renewable resources (wind energy) for generating power

which otherwise would have been generated using grid mix power plants, which is dominated by fossil fuel based thermal power plants. Through the injection of renewable power to the grid, the project activity would be displacing equivalent quantum of fossil fuel based electricity resulting in emission reduction of **53,197 tCO2eq** in this in this Monitoring Period.

b) Brief description of the installed technology and equipment>>

This Bundled project activity consists of multiple Wind turbines of 800kW, 1500 kW, 1250kW, 2100 kW respectively manufactured and supplied by Enercon & Suzlon. This project Generate 59.4 MW power which is consumed by customers delivered by the Grid.

In wind energy generation, kinetic energy of wind is converted into mechanical energy and subsequently into electrical energy. Wind has a considerable amount of kinetic energy when blowing at high speeds. This kinetic energy when passing through the blades of the WEG is converted into mechanical energy and rotates the wind blades. When the wind blades rotate, the connected generator also rotates, thereby producing electricity. The technology is clean technology since there are no GHG emissions associated with electricity generation.

Main component of the windmill is explained below:

Main Tower

This is a very tall structure with a door and inside ladder at the bottom. The door is used to enter the tower for operation and maintenance.

Blades

The windmills are provided with three blades. The blades are self-supporting in nature made up of Fibre Reinforced Polyester. The blades are mounted on the hub.

Nacelle

The Nacelle is the one which contains all the major parts of a windmill. The nacelle is made up of thick rugged steel and mounted on a heavy slewing ring. Under normal operating conditions, the nacelle would be facing the upstream wind direction.

Hub

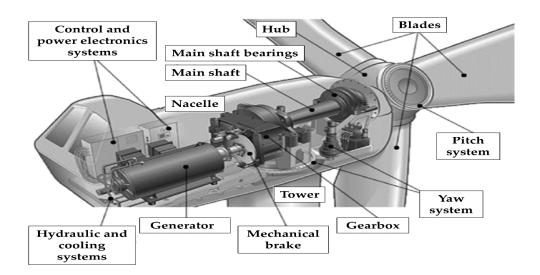
The Hub is an intermediate assembly between the wing and the main shaft of the wind turbine. Inside the hub, a system to actuate the aerodynamic brake is fitted. The hub is covered with nose cone.

[©] Universal CO2 Emission And Offset Registry Private Ltd

Main Shaft

The shaft connects the gear box and the hub. Solid high carbon steel bars or cylinders are used as main shaft. The shaft is supported by two bearings.

Gear Box, Bearing and Housing


The gearbox is used to increase the speed ratio so that the rotor speed is increased to the rated generator speed. Oil cooling is employed to control the heating of the gearbox. Gearboxes are mounted over dampers to minimize vibration. The main bearings are placed inside the housing.

Brake

Brake is employed in the WEGs to stop the wind turbine mainly for maintenance check. Brakes are also applied during over speed conditions of the wind turbine. The brakes are placed on the high-speed shaft.

Generator

The generator uses an induction type of generator. The generators are provided with monitoring sensors in each phase winding to prevent damage to the generators.

c) Relevant dates for the project activity (e.g. construction, commissioning, continued operation periods, etc.)>>

Provide the duration of the crediting period corresponding to the monitoring period covered in this monitoring report.

UCR Project ID: **447** Project Start Date : 01/04/2015 Commissioning Date: 31/03/2006

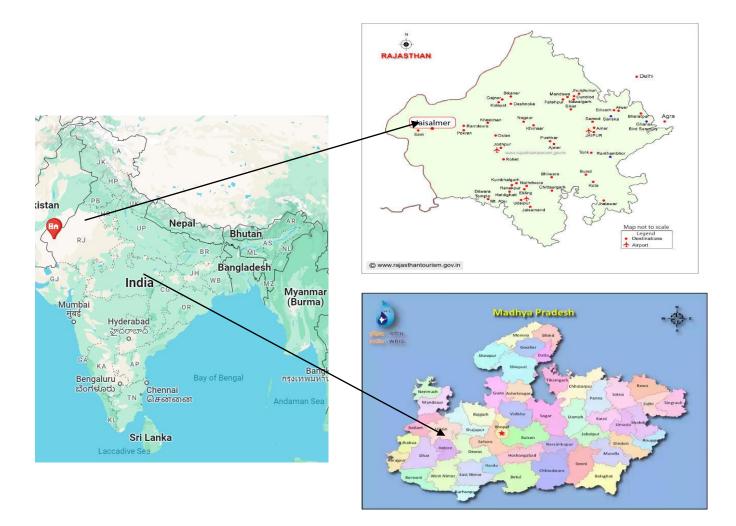
d) Total GHG emission reductions achieved or net anthropogenic GHG removals by sinks achieved in this monitoring period>>

The total GHG emission reductions achieved in this monitoring period is as follows:

Summary of the Project Activity and ERs Generated for the Monitoring Period					
Start date of this Monitoring Period	01/01/2024				
Carbon credits claimed up to	31/12/2024				
Total ERs generated (tCO _{2eq})	53,197 tCO2eq				
Leakage	0				

e) Baseline Scenario>>

This section provides details of emission displacement rates/coefficients/factors established by the applicable methodology selected for the project. As per para 19 of the approved consolidated methodology ACM0002, version 21, if the project activity is the installation of a new grid connected renewable power plant/unit, the baseline scenario is the following:


"The baseline scenario is that the electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid".

A.2. Location of project activity>>

Country: India

Village	Installed Capacity	District	State
Sirwa	1250kW	Jaisalmer	Rajasthan
Selat	10500kW	Jaisalmer	Rajasthan
Moda	1250kW	Jaisalmer	Rajasthan
Deriya	7500kW	Jaisalmer	Rajasthan
Bastwa	6000kW	Jodhpur	Rajasthan
Salodi	6400kW	Jodhpur	Rajasthan

Beru	1600kW	Jodhpur	Rajasthan
Nagada	2500kW	Dewas	Madhya Pradesh
Karnavad	22400kW	Dewas	Madhya Pradesh

		Project A	Activity			
Loc No	Make	Site	Capacity in kW	Village	Latitude	Longitude
MK205	Suzlon	Jaisalmer	2100	Selat	27.19742	70.809694
MK204	Suzlon	Jaisalmer	2100	Selat	27.19558	70.814611
MK203	Suzlon	Jaisalmer	2100	Selat	27.19381	70.819528
MK202	Suzlon	Jaisalmer	2100	Selat	27.192	70.824472
MK201	Suzlon	Jaisalmer	2100	Selat	27.19019	70.829417
AK29	Suzlon	Akal	1250	Moda	26.707778	71.101806
AK18	Suzlon	Akal	1250	Sirwa	26.668361	71.101806
J723	Suzlon	RATAN KA BAAS	1500	Deriya	26.59386	72.55930556
J724	Suzlon	RATAN KA BAAS	1500	Deriya	26.59139	72.56197222

I		RATAN		1	1	1
J725	Suzlon	KABAAS	1500	Deriya	26.57875	72.56013889
0720	Duzion	RATAN	1000	Donyu	20.37073	72.50015005
J726	Suzlon	KABAAS	1500	Deriya	26.57764	72.56430556
		RATAN				
J727	Suzlon	KA BAAS	1500	Deriya	26.56847	72.56038889
		RATAN				
RKBNL09	Suzlon	KA BAAS	1500	Bastwa	26.53647	72.56517778
		RATAN				
RKB87	Suzlon	KA BAAS	1500	Bastwa	26.51966	72.57119444
		RATAN				
RKB84	Suzlon	KA BAAS	1500	Bastwa	26.50928	72.56259167
		RATAN				
RKB85	Suzlon	KA BAAS	1500	Bastwa	26.51044	72.57031111
KSOLTI-07						
(77)	Enercon	Tinwari	800	Salodi	26.45925	72.83380556
KSOLTI-10						
(64)	Enercon	Tinwari	800	Salodi	26.46103	72.84280556
KSOLTI-06			000		0 < 15700	52 02212056
(76)	Enercon	Tinwari	800	Salodi	26.45799	72.83213056
KSOLTI-05	F	T ::	200	C - 1 - 1	26 45 69 4	72 92722056
(74) KCOLTL 00	Enercon	Tinwari	800	Salodi	26.45684	72.82733056
KSOLTI-09 (65)	Enercon	Tinwari	800	Salodi	26.45925	72.84255278
KSOLTI-08	Ellercoll	Tillwall	800	Saloui	20.43923	12.04233210
(66)	Enercon	Tinwari	800	Salodi	26.45641	72.843475
KSOLTI-04	Lifereon	Iniwan	000	Saloui	20.43041	12.043473
(71)	Enercon	Tinwari	800	Salodi	26.45198	72.83128056
KSOLTI-03		1 min uni		Durour	20.10190	12:0012:0000
(69)	Enercon	Tinwari	800	Salodi	26.45103	72.83588611
KSOLTI-02						
(14)	Enercon	Tinwari	800	Beru	26.42775	72.86227222
KSOLTI-01						
(13)	Enercon	Tinwari	800	Beru	26.4262	72.86237778
N-16	Suzlon	Dewas	1250	Nagada	22.89683	76.085361
N-13	Suzlon	Dewas	1250	Nagada	22.89525	76.077556
KSOLRT-						
30 (90)	Enercon	Dewas	800	Karnavad	22.82214	76.226222
KSOLRT-						
29 (65)	Enercon	Dewas	800	Karnavad	22.81111	76.212972
KSOLRT-						
28 (64)	Enercon	Dewas	800	Karnavad	22.80936	76.2095
KSOLRT-						
27 (63)	Enercon	Dewas	800	Karnavad	22.80747	76.208528
KSOLRT-			0.000			
31 (91)	Enercon	Dewas	800	Karnavad	22.80972	76.235278

KSOLRT-				1	1	
32 (92)	Enercon	Dewas	800	Karnavad	22.808	76.235611
KSOLRT-	Litercon	Dewas	000	Turnavad	22.000	70.233011
24 (54)	Enercon	Dewas	800	Karnavad	22.79861	76.198778
KSOLRT-					22.79001	1011/01/10
33 (93)	Enercon	Dewas	800	Karnavad	22.80522	76.240028
KSOLRT-						
25 (55)	Enercon	Dewas	800	Karnavad	22.79653	76.198278
KSOLRT-						
34 (94)	Enercon	Dewas	800	Karnavad	22.80422	76.244917
KSOLRT-						
26 (56)	Enercon	Dewas	800	Karnavad	22.79442	76.196889
KSOLRT-						
23 (53)	Enercon	Dewas	800	Karnavad	22.79489	76.21
KSOLRT-						
15 (45)	Enercon	Dewas	800	Karnavad	22.78511	76.215639
KSOLRT-						
16 (46)	Enercon	Dewas	800	Karnavad	22.78586	76.219861
KSOLRT-						
14 (44)	Enercon	Dewas	800	Karnavad	22.78294	76.215056
KSOLRT-						
13 (43)	Enercon	Dewas	800	Karnavad	22.78125	76.214556
KSOLRT-						
12 (42)	Enercon	Dewas	800	Karnavad	22.77925	76.213972
KSOLRT-						
11 (41)	Enercon	Dewas	800	Karnavad	22.77756	76.210972
KSOLRT-	-	5				- (2) (2)
10 (40)	Enercon	Dewas	800	Karnavad	22.77378	76.200222
KSOLRT-	T	D	000	17 1	00.7701.4	76 107
09 (39)	Enercon	Dewas	800	Karnavad	22.77214	76.197
KSOLRT-	Engrador	Damag	800	Varmanad	22 74261	76.183694
08 (19)	Enercon	Dewas	800	Karnavad	22.74361	/0.183094
KSOLRT- 07 (18)	Enercon	Dewas	800	Karnavad	22.74178	76.1835
KSOLRT-	Ellercoll	Dewas	800	Kaillavau	22.74170	70.1855
06 (17)	Enercon	Dewas	800	Karnavad	22.73983	76.183139
KSOLRT-	Lifercon	Dewas	000	Karnavad	22.13703	70.103137
05 (16)	Enercon	Dewas	800	Karnavad	22.73847	76.18525
KSOLRT-	Lifercon	Dewas	000	Ixamavad	22.130-1	70.10323
03 (14)	Enercon	Dewas	800	Karnavad	22.73875	76.192167
KSOLRT-		2 2 11 415				
04 (15)	Enercon	Dewas	800	Karnavad	22.73669	76.188861
KSOLRT-			-			
02 (10)	Enercon	Dewas	800	Karnavad	22.72961	76.196917
KSOLRT-					1	
01 (9)	Enercon	Dewas	800	Karnavad	22.72908	76.201389

LasNa	C'4. Norma	WEG	Wind turbine	Capacity in Kw	
Loc No	Site Name	Serial No	capacity kW		
MK205	Jaisalmer	52110008	2100		
MK204	Jaisalmer	52110005	2100		
MK203	Jaisalmer	52110008	2100		
MK202	Jaisalmer	52110023	2100	10500kW	
MK201	Jaisalmer	52110022	2100		
AK29	Akal	64264298	1250		
AK18	Akal	64263080	1250	2500kW	
J723	RATAN KA BAAS	51507480	1500		
J724	RATAN KA BAAS	51507473	1500	7500kW	
J725	RATAN KA BAAS	51507467	1500	75000	
J726	RATAN KA BAAS	51508307	1500		
J727	RATAN KA BAAS	51507292	1500		
RKBNL09	RATAN KA BAAS	51507551	1500		
RKB87	RATAN KA BAAS	51507041	1500	6000kW	
RKB84	RATAN KA BAAS	5108275	1500		
RKB85	RATAN KA BAAS	51508228	1500		
KSOLTI-07 (77)	Tinwari	91/7708	800		
KSOLTI-10 (64)	Tinwari	91/7719	800		
KSOLTI-06 (76)	Tinwari	91/7709	800		
KSOLTI-05 (74)	Tinwari	91/7721	800	-	
KSOLTI-09 (65)	Tinwari	91/7725	800		
KSOLTI-08 (66)	Tinwari	91/7735	800	4	
KSOLTI-04 (71)	Tinwari	91/7722	800		
KSOLTI-03 (69)	Tinwari	91/7744	800		

KSOLTI-02			1	
(14)	Tinwari	91/7695	800	
KSOLTI-01				
(13)	Tinwari	91/7696	800	
N-16	Dewas	N8/479703	1250	2500kW
N-13	Dewas	N8/480655	1250	
KSOLRT-30 (90)	Dewas	91/P/391-2/163	800	
KSOLRT-29 (65)	Dewas	91/L/T/481-2/391	800	
KSOLRT-28		91/L/T/391-2/472		
(64) KSOLRT-27	Dewas		800	
(63)	Dewas	91/P/391-2/149	800	
KSOLRT-31 (91)	Dewas	91/P/391-2/162	800	
KSOLRT-32 (92)	Dewas	91/S/534-2/391	800	
KSOLRT-24 (54)	Dewas	91/S/513/391-2	800	8000kW
KSOLRT-33		91/S/391-2/522		0000kW
(93) KSOLRT-25	Dewas	91/L/T391-2/493	800	
(55)	Dewas)1/L/13)1 2/4/3	800	-
KSOLRT-34 (94)	Dewas	91/MF/391-2/003	800	
KSOLRT-26 (56)	Dewas	91/S/518/391-2	800	
KSOLRT-23		91/L&T/391-		
(53)	Dewas	2/435	800	
KSOLRT-15 (45)	Dawag	91/L&T/391- 2/446	800	
KSOLRT-16	Dewas		800	-
(46)	Dewas	91/S/391-2/493	800	
KSOLRT-14		91/L&T/391-		
(44)	Dewas	2/410	800	
KSOLRT-13 (43)	Dewas	91/GB/391-2/062	800	
KSOLRT-12 (42)	Dewas	91/S/391-2/0448	800	
KSOLRT-11 (41)		91/P/391-2/0073	800	
(41) KSOLRT-10	Dewas		000	
(40)	Dewas	91/S/391-2/0451	800	
KSOLRT-09 (39)	Dewas	91/S/391-0/0319	800	

KSOLRT-08		91/GB/390-		
(19)	Dewas	0/0052	800	
KSOLRT-07		91/S/391-0/0282		
(18)	Dewas	91/3/391-0/0282	800	
KSOLRT-06		91/B/391-2/0269		
(17)	Dewas	91/D/391-2/0209	800	22400kW
KSOLRT-05		91/P/391-2/0038		
(16)	Dewas	91/1/391-2/0038	800	
KSOLRT-03		91/L&T/390-		
(14)	Dewas	0/0328	800	
KSOLRT-04		91/L&T/390-		
(15)	Dewas	0/0368	800	
KSOLRT-02		91/B/391-02/0276		
(10)	Dewas	<i>31/D/371-02/0210</i>	800	
KSOLRT-01		91/L&T/377/391-		
(9)	Dewas	2	800	

A.3. Parties and project participants >>

Party (Host)	Participants
India	ORCHID RENEWABLE POWERTECH PRIVATE LIMITED

A.4. References to methodologies and standardized baselines >>

SECTORAL SCOPE - 01 Energy industries (Renewable/Non-renewable sources

TYPE I- Renewable Energy Projects

CATEGORY- ACM0002.: "Grid connected electricity generation from renewable sources- Version 21.0."

A.5. Crediting period of project activity >>

Type- Renewable Start date- 01/04/2015 Length of the crediting period corresponding to this monitoring period: 01 Years 00 Months – 01/01/2024-31/12/2024

A.6. Contact information of responsible persons/entities >>

Contact Person- Lokesh Jain Email- lokesh.jain@viviidgreen.com Phone no- 91 89208 56146 Address- Sri Krishna Complex, New Link Road, Opp. Laxmi Industrial Estate, Andheri (West), Mumbai - 400053

SECTION B. Implementation of project activity

B.1. Description of implemented registered project activity >>

a) Provide information on the implementation status of the project activity during this monitoring period in accordance with UCR PCN>>

The main Purpose of the project activity is the implementation and operation of 59.4 MW wind farms to generate electricity in high wind speed areas of Rajasthan and Madhya Pradesh. ORCHID RENEWABLE POWERTECH PRIVATE LIMITED is the Project Proponent of these wind farm. The project was commissioned on several dates by the respective authority of government of Rajasthan & Madhya Pradesh. The applied technology is one of the most environment friendly technologies available as the operation of the wind power plant does not emit any GHGs or any other harmful gases unlike the operation of conventional power plant. The project activity has used the reliable and proven technology to ensure that an environmentally safe and sound technology has been implemented.

b) For the description of the installed technology(ies), technical process and equipment, include diagrams, where appropriate>>

All the machines are <u>S66, S82, S88, E53</u> make and have been developed by (SUZLON) and (ENERCON). The Suzlon flexi-slip system provides efficient control of the load and power control, and the turbine operation is effectively controlled by the Suzlon controller. The Enercon E-53 wind turbine harnesses wind energy for electricity generation through a simple yet efficient process. Wind passing over the three large blades creates lift, causing the rotor to spin. This rotation is directly transmitted to a powerful ring-shaped generator within the nacelle (housing atop the tower). Unlike conventional turbines with gearboxes, the E-53 utilizes a gearless design, reducing complexity and maintenance needs. The generator converts the rotational energy into electricity.

Leveraging the principles of kinetic energy conversion, wind energy generation harnesses the power of moving air masses. Wind turbines act as sophisticated windmills, their aerodynamically designed blades capturing the kinetic energy of wind. This captured energy is then converted into mechanical energy as the blades rotate. A connected generator utilizes this rotational motion to induce electrical current, resulting in the production of clean electricity without greenhouse gas emissions.

[©] Universal CO2 Emission And Offset Registry Private Ltd

Some of the salient features of the project equipment can be found in the below mentioned table.

MODEL	S66-1250kW	S82-1500kW	S88-2100kW
OPERATING DATA			
Rated power	1250 kW	1,500 kW	2100 kW
Cut-in wind speed	3 m/s	4 m/s	4 m/s
Rated wind speed	14m/s	12 m/s	14 m/s
Cut-off wind speed	22 m/s	20 m/s	25 m/s
Survival wind speed	52.5 m/s	52.5 m/s	59.5 m/s
ROTOR			
Туре	3 Blades, Upwind /Horizontal axis	3 Blades, Upwind/ Horizontal axis	3 Blades, Upwind/ Horizontal axis
Diameter	66 m	82 m	88 m
Rotational speed at rated power	13.5 to 20.3 rpm	15.6 to 16.3 rpm	15.1-17.7 rpm
Rotor blade material	Epoxy bonded fiber glass	Epoxy bonded fiberglass	Fiberglass / Epoxy
Swept area	3421 m²	5,281 m ²	6,082 m²
Power regulation	Active pitch regulated	Active pitch regulation	Active pitch regulation
GEARBOX			
Nominal load	1390 kW	1,650 kW	2,310 kW
Type of cooling	Forced oil cooling lubrication system	Forced oil cooling lubrication system	Forced oil cooling lubrication system
GENERATOR			
Т	Dual speed induction	Induction generator with slip rings,	Induction generator with slip rings, variable rotor resistance
Туре	generator (asynchronous)	variable rotor resistances via	with
		Suzlon Flexi	Suzlon Flexi slip
Speed at rated power	1506 rpm	1,511 rpm	1,812 rpm
Rated voltage	690 V AC (phase to phase)	690 V AC (phase to phase)	690/600V
Frequency	50 Hz	50 Hz	50/60Hz

Insulation	Class H	Class H	Class H
TOWER			
Tower height	63 m	76.1 m	71-90m
Hub height			
(including	65 m	76.8 m	80 m
foundation)			

E53 -800kW (https://renewablesfirst.co.uk/renewable-energy-technologies/windpower/wind-turbines/enercon-e53-800-kw-wind-turbine/)

Parameter	E53- 800kW	
Turbine		
Configuration	Three blade, horizontal axis, upwind	
Rated Power	800kW at 12m/s	
Rotor Speed	11 to 30 rpm	
IEC 61400-1 Turbine Class	IIIA	
Site Average Wind Speed	7.5 m/s	
Survival Wind Speed	57 m/s	
Rotor		
Rotor Diameter	52.9 m	
Swept Area	2,198 m ²	
Blade Material	GRP (Epoxy)	
Power regulation	Pitch controlled variable speed	
Generator		
Generator Type	ENERCON direct drive synchronous ring generator	
Configuration	3-Phase, 400V, 50Hz – 60Hz	
Brake & Safety System		
Main Brake System	3 independent pitch control systems with emergency power supply	
Secondary System	Rotor brake and Rotor lock (maintenance purposes)	
Automatic Shutdown triggered by	High wind speed, grid failure, over-speed, all other fault conditions	
Controls		
Control Systems User Interface	ENERCON SCADA	
Towers		

Available Hub Heights	50 m, 60 m, 75 m	
Tower Type	Tubular steel tower	
Warranty		
Period and type	Up to 15-year standard service package	

B.2 Do no harm or Impact test of the project activity>>

There are social, environmental, economic and technological benefits which contribute to sustainable development.

Social benefits:

- The project activity will lead to the development of supporting infrastructure such as road network etc., in the wind park location, the access to which is also provided to the local population.
- The project activity will lead to alleviation of poverty by establishing direct and indirect benefits through employment generation and improved economic activities by strengthening of local grid of the state electricity utility.
- Use of a renewable source of energy reduces the dependence on imported fossil fuels and associated price variation thereby leading to increased energy security.

Environmental benefits:

- The project activity employs renewable energy source for electricity generation instead of fossil fuel- based electricity generation which would have emitted gaseous, liquid and/or solid effluents/wastes.
- Being a renewable resource, using wind energy to generate electricity contributes to resource conservation. Thus, the project causes no negative impact on the surrounding environment and contributes to environmental well-being.

Economic benefits:

- The project activity requires temporary and permanent, skilled and semi-skilled manpower at the wind park; this will create additional employment opportunities in the region.
- The generated electricity will be fed into the NEWNE regional grid through local grid, thereby improving the grid frequency and availability of electricity to the local consumers (villagers & sub- urban habitants) which will provide new opportunities for industries and economic activities to be setup in the area thereby resulting in greater local employment, ultimately leading to overall development.

Technical benefits:

[©] Universal CO2 Emission And Offset Registry Private Ltd

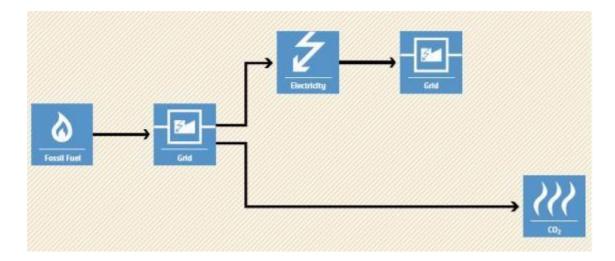
• Increased interest in wind energy projects will further push R&D efforts by technology providers to develop more efficient and better machinery in future.

United Nations Sustainable Development Goals:

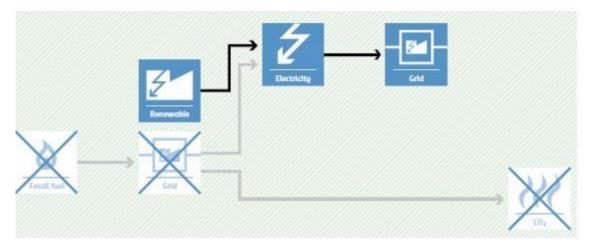
The project activity generates electrical power using wind energy, which is generated from windmills, thereby displacing non-renewable fossil resources resulting to sustainable, economic and environmental development. In the absence of the project activity equivalent amount of power generation would have taken place through fossil fuel dominated power generating stations. Thus, the renewable energy generation from project activity will result in reduction of the greenhouse gas emissions.

SDG Goals	Description	
Goal 4 4 QUALITY EDUCATION	This Project activity promotes educational amenities that can directly and indirectly help students achieve quality or better education. Also Support underprivileged or rural schools with required and unlocked various opportunities for school children.	
Goal 7 7 AFFORDABLE AND CLEAN ENERGY	This Bundled wind energy project will generate clean electricity at a more accessible price for consumers. By utilizing a renewable resource, the project contributes to a growing share of clean energy sources in the global energy mix, ultimately reducing reliance on fossil fuels.	
Goal 8 8 DECENT WORK AND ECONOMIC GROWTH	This project activity generates additional employment in the operations and maintenance of the wind farm for the local people. This project will achieve full and productive employment and decent work.	
Goal 13 13 CLIMATE	This 59.4 MW wind power project meets the SDG 13 goal by displacing fossil fuel with clean energy. This project is expected to reduce 53,197 tCO ₂ emission.	

B.3. Baseline Emissions>>


The baseline scenario identified at the PCN stage of the project activity is:

[©] Universal CO2 Emission And Offset Registry Private Ltd


In the absence of the project activity, the equivalent amount of electricity would have been generated from fossil fuel-based power plants and exported to the regional grid (which is connected to the unified Indian Grid system) as national grid is predominantly sourcing from fossil fuel-based power plants. Hence, baseline scenario of the project activity is the grid-based electricity system, which is also the pre-project scenario.

Schematic diagram showing the baseline scenario:

Baseline Scenario:

Project Scenario:

B.4. Debundling>>

This project is not a debundled component of a larger registered carbon offset project activity.

[©] Universal CO2 Emission And Offset Registry Private Ltd

SECTION C. Application of methodologies and standardized baselines

C.1. References to methodologies and standardized baselines >>

SECTORAL SCOPE – 01 Energy industries (Renewable/Non-renewable sources)

TYPE I- Renewable Energy Projects

CATEGORY- ACM0002.: "Grid connected electricity generation from renewable sources

Version21.0."

C.2. Applicability of methodologies and standardized baselines >>

The project activity involves generation of grid connected electricity from the construction and operation of a new wind power-based power project for selling it to grid. The project activity has an installed capacity of 59.4 MW which will qualify for a large-scale project activity. The project status corresponds to the methodology ACM0002 version 21, and applicability of methodology is discussed below.

Applicability Criteria.	Project Case
 1)This methodology is applicable to grid-connected renewable energy power generation project activities that: (a) Install a Greenfield power plant; (b) Involve a capacity addition to (an) existing plant(s); (c) Involve a retrofit of (an) existing operating plant(s)/unit(s); (d) Involve a rehabilitation of (an) existing plant(s)/unit(s); or (e) Involve a replacement of (an) existing plant(s)/unit(s). 	The proposed project activity is a green field Plant, that is to connected Grid. Therefore, the project activity satisfies the point (a).
 2) In case the project activity involves the integration of a BESS, the methodology is applicable to grid-connected renewable energy power generation project activities that: (a)Integrate BESS with a Greenfield power plant; (b) Integrate a BESS together with implementing a capacity addition to (an) existing solar photovoltaic1 or wind power plant(s)/unit(s); (c) Integrate a BESS to (an) existing solar photovoltaic or wind power plant(s)/unit(s) without implementing any other changes to the existing plant(s); (d) Integrate a BESS together with implementing a retrofit of (an) existing solar photovoltaic or wind power plant(s). 	59.4 MW Wind power project and does not involve the integration of a Battery Energy Storage System (BESS). This condition is not applicable for this project.

[©] Universal CO2 Emission And Offset Registry Private Ltd

 3)The methodology is applicable under the following conditions: (a) Hydro power plant/unit with or without reservoir, wind power plant/unit, geothermal power plant/unit, solar power plant/unit, wave power plant/unit or tidal power plant/unit; (b) In the case of capacity additions, retrofits, rehabilitations or replacements (except for wind, solar, wave or tidal power capacity addition projects) the existing plant/unit started commercial operation prior to the start of a minimum historical reference period of five years, used for the calculation of baseline emissions and defined in the baseline emission section, and no capacity expansion, retrofit, or rehabilitation of the plant/unit has been undertaken between the start of this minimum historical reference period and the implementation of the project activity; (c) In case of Greenfield project activities applicable under paragraph 5 (a) above, the project participants shall demonstrate that the BESS was an integral part of the design of the renewable energy project activity (e.g. by referring to feasibility studies or investment decision documents); (d) The BESS should be charged with electricity generated from the associated renewable energy power plant(s). Only during exigencies 2 may the BESS be charged with electricity from the grid or a fossil fuel electricity generator. In such cases, the corresponding GHG emissions shall be accounted for as project emissions following the requirements under section 5.4.4 below. The charging using the grid or using fossil fuel electricity generated should not amount to more than 2 per cent of the electricity for charging, the project participant shall not be entitled to issuance of the certified emission reductions for the concerned periods of the monitoring period. 	installation of a new Wind power plants without BESS integration. Therefore,
 4)In case of hydro power plants, one of the following conditions shall apply: a)The project activity is implemented in an existing single or multiple reservoirs, with no change in the volume of any of reservoirs; or b)The project activity is implemented in an existing single or multiple reservoirs, where the volume of the reservoir(s) is increased and the power density calculated using equation (7) is greater than 4 W/m2; or c)The project activity results in new single or multiple reservoirs and the power density calculate equation (7), is greater than 4 W/m2. d)The project activity is an integrated hydro power project 	installation of Wind power plants/units. Therefore, the said condition is not applicable.

involving multiple reservoirs, where the power density of any of the reservoirs, calculated using equation (7), is lower than or equal to 4 W/m2, all of the following conditions shall apply. i)The power density calculated using the total installed capacity of the integrated project, as per equation (8) is greater than 4W/m2; ii)Water flow between reservoirs is not used by any other hydropower unit which is not a part of the project activity; Installed capacity of the power plant(s) with power density lower than or equal to 4 W/m2shall be: Lower than or equal to 15 MW; and Less than 10% of the total iii) installed capacity of integrated hydro power project	
 5)In the case of integrated hydro power projects, project proponent shall: a) Demonstrate that water flow from upstream power plants/units spill directly to the downstream reservoir and that collectively constitute to the generation capacity of the integrated hydro power project; or b) Provide an analysis of the water balance covering the water fed to power units, with all possible combinations of reservoirs and without the construction of reservoirs. The purpose of water balance is to demonstrate the requirement of specific combination of reservoirs constructed under CDM project activity for the optimization of power output. This demonstration has to be carried out in the specific scenario of water availability indifferent seasons to optimize the water flow at the inlet of power units. Therefore, this water balance will take into account seasonal flows from river, tributaries (if any), and rainfall for minimum five years prior to implementation of CDM project activity. 	installation of a wind power plants/units. Therefore, the said criteria is not applicable.
6)The methodology is not applicable to:a) Project activities that involve switching from fossil fuels to renewable energy sources at the site of the project activity, since in this case the baseline may be the continued use of fossil fuels at the site.b) Biomass fired power plants;	Therefore, the said criteria is not
7)In the case of retrofits, rehabilitations, replacements, or capacity additions, this methodology is only applicable if the most plausible baseline scenario, as a result of the identification of baseline scenario, is "the continuation of the current situation, that is to use the power generation equipment that was already in use prior to the implementation of the project activity and undertaking business as usual maintenance	installation of wind power plants. Therefore, the said criteria is not applicable.

[©] Universal CO2 Emission And Offset Registry Private Ltd

C.3 Applicability of double counting emission reductions >>

There is no double accounting of emission reductions in the project activity due to the following reasons:

- Project is uniquely identifiable based on its location coordinates,
- Project has dedicated commissioning certificate and connection point,
- Project is associated with energy meters which are dedicated to the consumption point for project developer.

C.4. Project boundary, sources and greenhouse gases (GHGs)>>

As per applicable methodology, the spatial extent of the project boundary includes the project power plant, and all power plants connected physically to the electricity system that the project power plant is connected to. Hence, the project boundary includes the project site where the power plant has been installed, associated power evacuation infrastructure, energy metering points, switch yards and other civil constructs and connected to the regional grid of Rajasthan. & Madhya Pradesh.

	Source	GHG	Included?	Justification/Explanation
	CO2 emissions from	CO2	Included	Major source of emission
	electricity generation	CH4	Included	Major source of emission
Baseline	in grid-connected power plants that are displaced due to the project activity	N2O	Excluded	Excluded for simplification. This emission source is assumed to be very small
Project	Emissions from onsite electricity use in the project activity	CO2	Excluded	The quantity of electricity delivered to the project plant/unit from the grid has been deducted from the quantity of electricity supplied by the project plant/unit to the grid when calculating the baseline emission, hence onsite electricity use in the project does not need to be considered as project emission.
		CH4	Excluded	Excluded for simplification. This

	emission source is assumed to be very small.
N2O	Excluded for simplification. This emission source is assumed to be very small.

C.5. Establishment and description of baseline scenario (UCR Protocol) >>

As per the approved consolidated methodology ACM0002. Version-21, if the project activity is the installation of a new grid-connected renewable power plant, the baseline scenario is the following: "The baseline scenario is that the electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid".

The project activity involves setting up a new wind power plant to harness the green power from wind energy and sell it to the grid by signing a PPA. In the absence of the project activity, the equivalent amount of power would have been supplied by the Indian grid, which is fed mainly by fossil fuel fired plants. The power produced at grid from the other conventional sources which are predominantly fossil fuel based. Hence, the baseline for the project activity is the equivalent amount of power produced at the Indian grid.

A "grid emission factor" refers to a CO2 emission factor (tCO2/MWh) which will be associated with each unit of electricity provided by an electricity system. The UCR recommends an emission factor of ¹0.9 tCO2/MWh for the for the 2013 - 2020 years and 0.757 tCO2/MWh for year 2024 as a fairly conservative estimate for Indian projects.

Emission reductions are calculated as follows:

$$ER_{y} = BE_{y} - PE_{y} - LE_{y}$$
(Eq. 1)

Where,

- ERy = Emissions reductions in year y (t CO2)
- BE_y = Baseline emissions in year y (t CO2)

PEy = Project emissions in year y (t CO2)

LEy = Leakage emissions in year y (t CO2)

¹ <u>UCR CoU Standard Update: 2024 Vintage UCR Indian Grid Emission Factor Announced | by Universal Carbon Registry | Jan, 2025 | Medium</u>

[©] Universal CO2 Emission And Offset Registry Private Ltd

Baseline Emissions

Baseline emissions include only CO₂ emissions from electricity generation in power plants that are displaced due to the project activity. The methodology assumes that all project electricity generation above baseline levels would have been generated by existing grid-connected power plants and the addition of new grid-connected power plants.

* The Baseline emissions in year y can be calculated as follows:

$$BEy = EGPJ, y \times EFGrid, y, \tag{Eq. 2}$$

Where,

BEy	= Baseline emissions in year y (t CO2)
EGPJ,y	= Quantity of net electricity generation that is produced and fedinto the grid as a result of the implementation of the CDM project activity in year y (MWh)
<i>EF</i> Grid,y	= Grid emission factor in year y (t CO2/MWh)

As per paragraph 49 of ACM0002, version-21.0, "if the project activity is the installation of a Greenfield power plant with or without the BESS, as described under paragraph 4(a) or paragraph

5(a) then:

EG PJ, y = EGfacility, y

EGPJ, y : Quantity of net electricity generation that is produced and fed into the grid as result of the implementation of the GCC project activity in year y (MWh/year)

EG facility, y : Quantity of net electricity generation supplied by the project plant/unit to the grid in year y (MWh/yr)

Project Emissions

Since the project activity is a renewable energy project which generates electricity using wind power and hence does not result in project emissions as per the applicable methodology ACM0002, Paragraph 35, version 21.

[©] Universal CO2 Emission And Offset Registry Private Ltd

Thus,

$PE_y =$	0	(Eq. 3)
ГСу —	0	(Eq. 3)

Leakage Emissions

No other leakage emissions are considered. The emissions potentially arising due to activities such as power plant construction and upstream emissions from fossil fuel use (e.g. extraction, processing, transport etc.) are neglected. Paragraph 61, ACM0002 Version 21.

Thus,

 $LE_y = 0$

(Eq. 4)

ERy = BEy - PEy

= (EGfacility, y * EFgrid, CM, y) – PEy

The actual emission reduction (annualized average) achieved during the Second CoU period (01/01/2024 to 31/12/2024) are estimated as follows.

Year	Net Quantity of net electricity generation supplied by the project activity to the grid in year y	Emission Factor	Baseline Emissions	Project emissions or actual net GHG removals by sink	Leakage	Emission reductions or net anthropogenic GHG removals by sinks
	[MWh]	(tCO2e/MWh)	(tCO2e)	(tCO2e)	(tCO2e)	(tCO2e)
			[Bey]= [EGfacility,	[PEy]		[ERy]=[Bey]-
		[EFy]	y]* [EFy]	ני בא]	[LEy]	[Pey]-[Ley]
2024	70273	0.757	53197	0	0	53197
Total						53,197

C.6. Prior History>>

The project activity is a Bundled large-scale wind power project, and this project was never applied under any other GHG mechanism prior to this registration with UCR. Also, the capacity or the total project has not been applied for any other environmental crediting or certification mechanism. Hence the project will not cause double accounting of carbon credits (i.e., COUs).

C.7. Monitoring period number and duration>>

[©] Universal CO2 Emission And Offset Registry Private Ltd

Second Issuance Period	: 01 years 00Months
Monitoring Period	: 01/01/2024 to 31/12/2024

C.8. Changes to start date of crediting period >>

There is no change in the start date of the crediting period.

C.9. Permanent changes from PCN monitoring plan, applied methodology or applied standardized baseline >>

There are no permanent changes from the registered PCN monitoring plan and applied methodology.

C.10. Monitoring plan>>

Data and Parameters available at validation (ex-ante values):

Data / Parameter	<i>EF</i> Grid,y
Data unit	tCO2 /MWh
Description	A "grid emission factor" refers to a CO2 emission factor (tCO2/MWh) which will be associated with each unit of electricity provided by an electricity system. The UCR recommends an emission factor of 0.9 tCO2/MWh for the for the 2013 - 2020 years and 0.757 tCO2/MWh for year 2024 as a fairly conservative estimate for Indian projects.
Source of data	UCR CoU Standard Update: 2024 Vintage UCR Indian Grid Emission Factor Announced by Universal Carbon Registry Jan, 2025 Medium
Value applied	0.757
Measurement methods and procedures	-
Monitoring frequency	Ex-ante fixed parameter
Purpose of Data	For the calculation of Emission Factor of the grid

Data and Parameters to be monitored

Data / Parameter	EG _{pj,y} ,
Data unit	MWh

Description	Net electricity supplied to the NEWNE grid facility by the project activity.
Source of data	Joint Meter Reading Report
Measurement	Data Type: Measured
procedures (if	Monitoring equipment: Energy Meters are used for monitoring Archiving
any):	Policy: Electronic
	Cross checking: Quantity of net electricity supplied to or consumed at PP's facility will be cross checked from the monthly bills or invoices raised by Discom whichever is applicable. The Net electricity supplied to the grid will be calculated by the values of electricity export to the grid. The Net electricity is recorded as following: Thus, EGpj,y= EGnet, Export.

Measurement Frequency:	Monthly The net energy exported to the grid is measured every month using calibrated energy meter by the State Electricity Board authorities in the presence of the project implementer or its representatives. The meter/s shall be jointly inspected and sealed by authorised representatives of the company and the state utility. Measuring procedure: Will be measured by an export-import energy meter. The						
	 net electricity exported by the project plant would either be directly sourced a measured parameter or be calculated by deducting the amount of import electricity from the total amount of exported electricity. Accuracy class of energy meter: 0.2s 						
	Calibration Frequency: As per the Central Electricity Authority the testing and calibration frequency should be once in five years.						
QA/QC procedures applied:	Continuous monitoring, hourly measurement monthly recording. Tri- vector (TVM)/ABT energy meters with accuracy class 0.2s.						
	Calibration of the Main meters will be carried out once in five (5) years as per National Standards (as per the provision of CEA, India) and faulty meters will be duly replaced immediately as per the provision of power purchase agreement.						
	Cross Checking:						
	Quantity of net electricity supplied to the grid will be cross checked from the invoices raised by the project participant to the grid.						
Purpose of data:	The Data/Parameter is required to calculate the baseline emission.						
Value applied:	70,273MWh						
Purpose of data:	Calculation of baseline emission.						

Appendix-1>Meter Change Details & Calibration Details

In Madhya Pradesh Site the Main Meter & Check meter has been changed for All the Location.

MP site	Old			N	ew		Calibration Details
Location No	Main Meter	Check meter	Replacement Date	Main Meter	Check meter	Calibration Validity	Calibration Delay
39-41	XF452866	XF452867	28.06.2022	Q0594040	Q0594041	27.06.2027	01.01.2013 to 27.06.2022
42-44	XF452866	XF452867	28.06.2022	Q0594040	Q0594041	27.06.2027	01.01.2013 to 27.06.2022
90	XF101502	XF101498	05.03.2021	Q0380985	Q0380986	04.03.2026	01.01.2013 to 04.03.2021
63-65	XF186471	XF101520	30.03.2021	Q0380993	Q0380994	29.03.2026	01.01.2013 to 29.03.2021
54-56	XF101511	XF100845	23.03.2021	Q0380995	Q0380996	22.03.2026	01.01.2013 to 22-03-2021
53	XF19838	XF101519	23.03.2022	Q0380987	Q0380988	22.03.2027	01.01.2013 to 22.03.2022
45-46	XF101505	XF101504	23.03.2023	Q0426399	Q0426400	22.03.2028	01.01.2013 to 22.03.2023
91-94	XF137903	XE137904	09.03.2021	Q0380964	Q0380965	08.03.2026	01.01.2013 to 08.03.2021
9	XF101513	XF101501	09.03.2022	Q0380991	Q0380992	08.03.2027	01.01.2013 to 08.03.2022
10	XF101514	XF101519	09.03.2023	Q0380989	Q0380990	08.03.2028	01.01.2013 to 08.03.2023
14-19	XF186467	XF101473	09.07.2021	Q0381000	Q0380999	08.07.2026	01.01.2013 to 08.07.2021
N13	XF452862	XF423453	03.06.2022	Q0594036	Q0594037	02.06.2027	01.01.2013 to 02.06.2022
N16	XF452864	XF423454	03.06.2023	Q0594038	Q0594039	02.06.2028	01.01.2013 to 02.06.2023

The Meter details & calibration details for Rajasthan is given below-

Rajasthan site	As per JMR	(Sub-station)	Calibration Details		
Location No	Main Meter	Check meter	Calibration Date	Calibration Delay	Considered Delay Period*
MK205	RJB81784 & RJB90206				
MK204					
MK203		RJB81785 & RJB90207	NA	NA	NA
MK202					
MK201					

AK29	RJB90208	RJB90209	NA	NA	NA
AK18	1000200	1000200			
J723					01-01-2015
J724					
J725					to
J726			07-11-2020	01-01-2015	31-12-2019
	RJB90253	RJB90254	30-01-2022	to	01 12 2010
			15-04-2023	06-11-2020	01-01-2019 to
J727					06-11-2020
RKBNL09				01-01-2015	01-01-2015
RKB87	RJB90216	RJB90217	15-04-2023	to	to
RKB84				31-03-2023	31-03-2023
RKB85					
KSOLTI-07 (77)					
KSOLTI-10 (64)					
KSOLTI-06 (76)					
KSOLTI-05 (74)				NA	
KSOLTI-09 (65)		DIDAAAEA			
KSOLTI-08 (66)	RJB00354	RJB00356	NA		NA
KSOLTI-04 (71)					
KSOLTI-03 (69)					
KSOLTI-02 (14)					
KSOLTI-01 (13)					

There is calibration delay for the monitoring period mentioned above. The error factor has been applied in net export values for delay period as meters were not calibrated as per the calibration frequency. As per VVS requirement: error factor of " $\pm 0.2\%$ " should be applicable for both export & import i.e. the measured values. However, net electricity generation is considered as per the registered monitoring plan, the separate export and import values are not available. Hence being conservative and to account for the error for both export & import, a cumulative error of "-0.4%" on net electricity generation has been applied for delay period.

https://cea.nic.in/wp-content/uploads/2020/02/meter_reg.pdf